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A solution is obtained for the problem of isentropic compression of perfect
gas in a spherical centered wave, with infinite compression of the mass of
initially homogeneous substance, Specific solutions are presented for adia -
batic exponents equal 3 and 5/;, and asymptotic formulas are derived for
the general case, Obtained solutions are compared with known solutions.

Centered rarefaction waves with characteristics issuing from a single point repre-
sent a wide class of self-similar solutions of equations of gasdynamics in the one-dim-
ensional plane case, A similar solution was derived by Staniukovich [1] for plane
compression waves. Recently, considerable attention was given to the phenomenon of
isentropic collapse, i, e, to the convergence of mass to a center. Asymptotics of pres-
sure variation as a function of time was obtained for particles of matter subjected to
such motions [ 2], and an analytic solution was given in [3,4] for a new class of self-
similar problems of isentropic collapse in the case of a particular profile of density in
a compression wave,

A solution of the problem of the spherical centered compression wave contiguous
to an initially quiescent matter is given below. In Fig, 1 curves 1, 2,and 3 represent,
respectively , the particle “trajectory ", the {8 -characteristics, and the 7-lines. The
case involving collapse belongs to the class of self-similar solutions, referred to as
quasi-simple spherical waves [5],

Let the matter undergoing compression be a perfect gas whose initial pressure,
density , and speed of sound we denote, respectively ,by po, Po and c,. The adiabatic
exponent is assumed to be ¢ =3, since then the formulas are simpler (for other values
of pweshall present only certain final results ), Note thatsimilar results canbe obtained for
condensed matter whose equation of state is of the form p = vy 2poce? [(p / )Y — 1]
in which pressure is represented by the term y™pyc,2.

In Riemann variables the equations of motion are of the form

da da a2 — B2 7 0 2 —aq?
737+a737-‘{’Tt3—=0' 5_§+[379§—+62—ra=0 1)
where @ = u -4 ¢ and B = u — ¢, anduand c are, respectively, the velocity of
matter and the speed of sound. Their solution is sought in the self-similar form
W) = —a(r), B(r 6 < b, v (,—‘ 2)
where ¢ is the time measured from the instant of focusing and r is the distance from
the center,

This investigation is similar to [5,6], except for the choice of variables that are

more convenjent in this case, The substitution of parameters (2) into (1) yields
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. da b2 — 34% - 2a db at— 352 4 25 (3)

dt T 2 —a)  Ydr =T 22—
The motion is bounded a weak discontimity » = — ¢ 7 at which u =0 and
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¢ = ¢p. From this we derive for system (3 ) the initial conditions

a(—1)=—1, b(—1) =1

The problem consists of determining in the plane (g, b) the integral curve that
joins the initial point 4 {(— 1, {j where T = — 1 and the end point where v = 0.

The general pattern of curves in the plane (e, &) is shown in Fig, 2, where 1de-
notes integral curves, 2 and 3 denote, respectively, isoclines of infinities and zeros,
and 4 represents the loci at which the matter is brought to rest in a percussive manner

(a = b). Intersection of isoclines are singular points, Below, the following points are
important; 4 (— 1,1) and B (1,1) are directional nodes, O (0, 0) is a diacritical
node, 8 (1 — ¥3)/ 4, (4 + V3)/4) is a saddle point with angular coefficients of
separatrices K; , = — 44 V15.

At the initial point 4 parameter T=— 1 which increases along the curve and
at point § vanishes, Denoting @ —as=x and & —bs =1y and assuming that
close to & y = kx ,after the rejection of small terms in Eqs, (3 ) and simplifications,
we obtain

trdz/dv=(Y5—1)z

hence v = 2989 and when z —» 0 also T— 0. Thus the separatrix AS of saddle
S isthe sought curve and point S corresponds to a collapse.
The whole curve 45 is determined by numerical integration of system (3 ) (from
S to the left), after which the numerical integration of equation u == (@ + B) / 2 or
dr { dt= r (a4 b)/ (2t) yields the piston law of motion r (¢!) and, then the speed
= r (@ — b) / (2¢), and pressure p/ po = (¢/ co)® of sound,
Close to the focus

dar (ag +bgy” r (ag—bg)r Var
dt ~ 2 =G = 2t =TT

fvesr~ s and p o~ ~ (r/1) ~ 4,
For other y (without adducing the derivation )

ag={1—V¥n bg=U+VV)n n=2/(vy—v+2) (4
r~fh p~tY, B ~th L= +3%v(v—DIn

where v = 1, 2,3 ,respectively, for the plane, cylindrical and spherical cases, E*(t)
is the energy flux per unit of time through a selected spherical surface of the matter.
These formulas are in agreement with related formulas in [2 — 4, 7] but differ from
those in [8],

The dependence of pressure on the piston 27/ p, and of the mean compression of
the sphere § = (r, / 7)® ontime ¢/ (t, is the total compression time) fory = 3
and y==%/3 is shown in Fig.3 by curves 1 and 2, respectively, Curves 3 and 4, which
are shown there for comparison, relate to results of calculations by asymptotic formulas
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(4) that are used (see,e.g., [2])in applied calculations. The coefficients in asymp-
totic formulas were numerically computed ,

Let us explain the meaning of other integral curves in the neighbortiood of 4.5.The
curves lying above the saddle point § are not solutions of the problem, since the deri-
vative &b /dt changes its sign at intersection with the horizontal b =1 ,i.e. 1 be-
gins again to decrease, without tending to zero, and the solution for @ and b becomes
two-valued, Other curves of the SMO (*) type correspond to real motions, i.e, to
quasi~simple waves[5], At point O of these curves t vanishes, and close to that point
from (3) we have tda /dt = a, i.e, T=ma andT — 0 whena — 0. The velocity
remains constant , since close to zero p = pg and

(a4 b)r - ¢ (14 n) (5)
V=" T 2m

The pattern of motion for that case is shown in Fig.4 ( OB is the reflected wave;
the remaining notation conforms to Fig, 1), The compression wave is not centered (the
characteristics do not converge at the center) but the similarity (self-similarity) of
particle trajectories remains, The velocity at instant ¢ = 0 is everywhere the same
and directed toward the center, which corresponds to the initial state in Sedov 's solution
of the problem of gas focusing at a point [6], It is defined by the continuation of cur-
ves beyond the point O up to intersection with line MN. Shock wave OB issues from
the center, behind which the gas is at rest.

The extreme lower curve AO in Fig. 2 corresponds to quiescence and absence of
compression (a = — b, u =0), while the upper one which adjoins SC corresponds to
infinitely high velocity and compression. The latter is clear,since the variation of ©
along a curve close to SO is slow (at & and Ot = 0),hence m = ¢ and by (5) velo-
city u is infinitely high, It is, consequently, possible to formulate the laws of motion of
a particular particle and of pressure variation in it , laws that define any compressionof an
initially homogeneous sphere from 1to oo with also homogeneous final states.

Solutions that correspond to integral curves within the curvilinear triangle BSO in
Fig. 2 and their continuations to intersection with MN are of asimilarcharacter, Con-
traction of the envelope at whose innerboundary ¢ = 0 and u = const corresponds to these
physically . Line g g corresponds to collapse, The asymptotic variation of parameters is then
the same as in the case of a cylindrical wave [4],

Thus flows of the type of centered compression waves may be relaized in initially
homogeneous spherical systems, A finite mass of matter then undergoes infinite com-
pression and the energy of compression also tends to be infinitely great,

As was done in [7], it is possible to indicate other solutions that have the same
properties, for instance, when the self-similar variable T ~ ¢/r2 (g > 1) is a power
function, However such solutions correspond to specially created profiles that are physi-
cally artificial. Some of these may be considered as limits of real motions [7]. Results
of this investigation supplement those in [5] for ¢ = 1.

The asymptotic formulas obtained here for the variation of gasdynamic quantities
are the same as the solutions presented in [3, 4].But unlike the cases considered in those
investigations , the solution presented here for the centered wave, as well as for spherical

*yEditor's note, Self-similar Motions of Object.
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quasi-simple waves of similar character, does not require the creation of special pro-
files of parameters. This means that one can hope to realize experimentally the results
obtained here , similar to those in[2,8],
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