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A solution is obtained for the problem of isentropic compression of perfect 
gas in a spherical centered wave, with infinite compression of the mass of 
initially homogeneous substance. Specific solutions are presented for adia - 
batic exponents equal 3 and 6/s, and asymptotic formulas are derived for 
the general case. Obtained solutions are compared with known solutions. 

Centered rarefaction waves with characteristics issuing from a single point repre- 
sent a wide class of self-similar solutions of equations of gasdynamics in the one-dim- 
ensional plane case. A similar solution was derived by Staniukovich [ 1 ] for plane 
compression waves. Recently, considerable attention was given to the phenomenon of 
isentropic collapse ) i. e. to the convergence of mass to a center. Asymptotics of pres- 
sure variation as a function of time was obtained for particles of matter subjected to 
such motions [ 2 1, and an analytic solution was given in [ 3.4 ] for a new class of self- 
similar problems of isentropic collapse in the case of a particular profile of density in 

a compression wave. 
A solution of the problem of the spherical centered compression wave contiguous 

to an initially quiescent matter is given below. In Fig. 1 curves 1,2, and 3 represent, 

respectively, the particle “trajectory ‘I, the p -characteristics, and the r -lines. The 

case involving collapse belongs to the class of self-similar solutions, referred to as 

quasi-simple spherical waves [ 5 1. 
Let the matter undergoing compression be a perfect gas whose initial pressure, 

density, and speed of sound we denote) respectively, by PO, PO and co_ The adiabatic 
exponent is assumed to be y =3, since then the formulas are simpler (for other values 
of y we shall present only certain final results ) . Note that similar results can be obtained for 
condensed matter whose equation of state is of the form p = y-l~o~oa [(p / po)y - 11 
in which pressure is represented by the term y-rooco~. 

In Piemann variables the equations of motion are of the form 

where u= u+c and B = u - C, and u and c are, respectively , the velocity of 
matter and the speed of sound. Their solution is sought in the self-similar form 

where t is the time measured from the instant of focusing and r is the distance from 
the center. 

This investigation is similar to [ 5,6 1, except for the choice of variables that are 
more convenient in this case. The substitution of parameters (2 ) into (1) yields 
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IIU b2-3&+2a db 
‘ciz= 2(2--a) ’ ‘xs 

az-3b”+2b (3) 
2(1 -b) 

The motion is bounded by a weak discontinuity r = - cot at which u = 0 and 
c = co. From this we derive for system (3 ) the initial conditions 

a (--1) = --1, b (- 1) = 1 

The problem consists of determining in the plane (a, b) the integral curve that 
joins the initial point A (- 1, 1) where a = - 1 and the end point where z = 0. 

The general pattern of curves in the plane (a, b) is shown in Fig. 2, where 1 de - 
notes integral curves, 2 and 3 denote 1 respectively, isoclines of infinities and zeros, 
and 4 represents the loci at which the matter is brought to rest in a percussive manner 
(a = b). Intersection of isoclines are singular points. Below, the following points are 

important: A (- 1,1) and B (1,1) are directional nodes, 0 (0, 0) is a diacritical 
node, S ((1 - p”3j / 4, (i + 1/3) / 4) is a saddle point with angular coefficients of 
sepacatrices KIBz = - 4f m. 

At the initial point A parameter Z= - 1 which increases along the curve and 
at point S vanishes. Denoting a - as = x and b - bs = Y and assuming that 
close to s y = h-2 , after the rejection of small terms in Eqs . (3 ) and simplifications, 
we obtain 

z&fdz=(~S---)s 

hence f = TOPS and when x + 0 also r --$ 0. Thus the separatrix AS of saddle 
S is the sought curve and point S corresponds to a collapse. 

The whole curve AS is determined by numerical integration of system (3 ) (from 
S to the left), after which the numerical integration of equation u = (a i- B) / 2 or 

dr I dt = r (a -I- bi / (2t) yields the piston law of motion r (t) and, then the speed 
c = r (a - b) / (2t), and pressure P / PO = (c / CO)’ of sound. 

Close to the focus 

dr (%+bs)r r (% - $1 r 
dt= 2t =z, c= 2t 

fir 
=--G-- 

1. e. r - t’lr and p - d - (r / t)3 - t-*14. 

For other y (without adducing the derivation ) 

as=(l--j/v)‘cl, +=(t+T/$n, 7j=2/(~y--v+2) (4) 

Q r--t, p - t-“YQ, E’ - t- 6. 5= tf +%~(Y--i)lrl 

where Y = 1, 2, 3 , respectively ) for the plane, cylindrical and spherical cases, E’(t) 

is the energy flux per unit of time through a selected spherical surface of the matter. 
These formulas are in agreement with related formulas in [ 2 - 4,7 J but differ from 
these in [8]. 

The dependence of pressure on the piston P / p0 and of the mean compression of 
the sphere 3 = (r. / r)a on time t / to (to is the total compression time) for y = 3 
and y=Vs is shown in Fig. 3 by curves 1. and 2, respectively. Curves 3 and 4, which 
are shown there for comparison, relate to results of calculator by asymptotic formulas 
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(4 ) that are used (see, e. g., [ 2 ] ) in applied calculations. The coefficients in asymp- 
totic formulas were numerically computed. 

Let us explain the meaning of other integral curves in the neighborhood of AS.The 
curves lying above the saddle point S are not solutions of the problem, since the deri- 
vative db / dz changes its sign at intersection with the horizontal b = 2 , i.e. .-c be- 
gins again to decrease, without tending to zero, and the solution for a and b becomes 

two-valued. Other curves of the SMO ( *) type correspond to real motions, i. e, to 
quasi-simple waves [ 51. At point 0 of these curves z vanishes, and close to that point 

from (3 ) we have zda / dz = a, i.e.z=maandr+O whena+O. The velocity 
remains constant, since close to zero b = no and 

u= (at,b)r ~ co(li-n) 
2t 2m 

(5) 

The pattern of motion for that case is shown in Fig, 4 ( OB is the reflected wave; 
the remaining notation conforms to Fig, 1). The compression wave is not centered (the 

characteristics do not converge at the center) but the similarity (self-similarity) of 

particle trajectories remains. The velocity at instant t = 0 is everywhere the same 

and directed toward the center, which corresponds to the initial state in Sedov ‘s solution 
of the problem of gas focusing at a point [ 61. It is defined by the continuation of cur- 
ves beyond the point 0 up to intersection with line MN. Shock wave OB issues from 
the center, behind which the gas is at rest. 

The extreme lower curve A0 in Fig. 2 corresponds to quiescence and absence of 
compression (a = - b, u =0), while the upper one which adjoins S(3 corresponds to 

infinitely high velocity and compression. The latter is clear, since the variation of r 

along a curve close to SO is slow (at S and 0 r = 0), hence m = 0 and by (5) velo- 
city u is infinitely high. It is, consequently, possible to formulate the laws of motion of 
a particular particle and of pressure variation in it, laws that define any compression of an 
initially homogeneous sphere from 1 to 00 with also homogeneous final states. 

Solutions that correspond to integral curves within the curvilinear triangle BSO in 

Fig. 2 and their continuations to intersection with MN are of a similar character, Con- 

traction of the envelope at whose inner boundary c = 0 and u = const corresponds to these 

physically. LineBS corresponds to collapse. The asymptotic variation of parameters is then 
the same as in the case of a cylindrical wave [ 4 1. 

Thus flows of the type of centered compression waves may be relaized in initially 
homogeneous spherical systems. A finite mass of matter then undergoes infinite com- 

pression and the energy of compression also tends to be infinitely great. 
As was done in [ 7 1, it is possible to indicate other solutions that have the same 

properties, for instance, when the self-similar variable 7 - t / r* (q > 1) is a power 
function. However such solutions correspond to specially created profiles that are ph)si- 
tally artificial. Some of these may be considered as limits of real motions [ 7 1. Results 
of this investigation supplement those in [ 5 ] for q = 1. 

The asymptotic formulas obtained here for the variation of gasdynamic quantities 

are the same as the solutions presented in [ 3,4]. But unlike the cases considered in those 
investigations, the solution presented here for the centered wave, as well as for spherical 
___.- -.__ - ---- .- --- ___ __ - 
*) Ed i to r ‘s n o t e . Self-similar Motions of Object. 
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Fig. 1 Fig, 2 

Fig. 4 Fig. 3 
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quasi-simple waves of similar character, does not requite the creation of special pro - 
fifes of parameter . This means that one can hope to realize experimentally the results 
obtained here, similar to those in [ ‘2 ,8 1, 
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